H POSTECH - MLG - 2011 - 008 Restricted Deep Belief Net - works for Multi - View Learn - ing a

نویسندگان

  • Yoonseop Kang
  • Seungjin Choi
چکیده

Deep belief network (DBN) is a probabilistic generative model with multiple layers of hidden nodes and a layer of visible nodes, where parameterizations between layers obey harmonium or restricted Boltzmann machines (RBMs). In this paper we present restricted deep belief network (RDBN) for multi-view learning, where each layer of hidden nodes is composed of view-specific and shared hidden nodes, in order to learn individual and shared hidden spaces from multiple views of data. View-specific hidden nodes are connected to corresponding view-specific hidden nodes in the lower-layer or visible nodes involving a specific view, whereas shared hidden nodes follow inter-layer connections without restrictions as in standard DBNs. RDBN is trained using layer-wise contrastive divergence learning. Numerical experiments on synthetic and real-world datasets demonstrate the useful behavior of the RDBN, compared to the multi-wing harmonium (MWH) which is a two-layer undirected model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Deep Belief Nets to Learn Covariance Kernels for Gaussian Processes

We show how to use unlabeled data and a deep belief net (DBN) to learn a good covariance kernel for a Gaussian process. We first learn a deep generative model of the unlabeled data using the fast, greedy algorithm introduced by [7]. If the data is high-dimensional and highly-structured, a Gaussian kernel applied to the top layer of features in the DBN works much better than a similar kernel app...

متن کامل

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

Extensive Deep Belief Nets with Restricted Boltzmann Machine Using MapReduce Framework

Big data is a collection of data sets which is used to describe the exponential growth and availability of both ordered and amorphous data. It is difficult to process big data using traditional data processing applications. In many practical problems, deep learning is one of the machine learning algorithms that has received great popularity in both academia and industry due to its high-level ab...

متن کامل

Hidden Variable Models for Market Basket Data. Statistical Performance and Managerial Implications

We compare the performance of several hidden variable models, namely binary factor analysis, topic models (latent Dirichlet allocation, correlated topic model), the restricted Boltzmann machine and the deep belief net. We shortly present these models and outline their estimation. Performance is measured by log likelihood values of these models for a holdout data set of market baskets. For each ...

متن کامل

Aircraft Detection by Deep Convolutional Neural Networks

Features play crucial role in the performance of classifier for object detection from high-resolution remote sensing images. In this paper, we implemented two types of deep learning methods, deep convolutional neural network (DNN) and deep belief net (DBN), comparing their performances with that of the traditional methods (handcrafted features with a shallow classifier) in the task of aircraft ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011